skip to main content


Search for: All records

Creators/Authors contains: "Chu, Housen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract. In the global methane budget, the largest natural sourceis attributed to wetlands, which encompass all ecosystems composed ofwaterlogged or inundated ground, capable of methane production. Among them,northern peatlands that store large amounts of soil organic carbon have beenfunctioning, since the end of the last glaciation period, as long-termsources of methane (CH4) and are one of the most significant methanesources among wetlands. To reduce uncertainty of quantifying methane flux in theglobal methane budget, it is of significance to understand the underlyingprocesses for methane production and fluxes in northern peatlands. A methanemodel that features methane production and transport by plants, ebullitionprocess and diffusion in soil, oxidation to CO2, and CH4 fluxes tothe atmosphere has been embedded in the ORCHIDEE-PEAT land surface modelthat includes an explicit representation of northern peatlands.ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributedon both the Eurasian and American continents in the northern boreal andtemperate regions. Data assimilation approaches were employed to optimizedparameters at each site and at all sites simultaneously. Results show thatmethanogenesis is sensitive to temperature and substrate availability overthe top 75 cm of soil depth. Methane emissions estimated using single siteoptimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average ofyearly methane emissions). While using the multi-site optimization (MSO),methane emissions are overestimated by 5 g CH4 m−2 yr−1 onaverage across all investigated sites (i.e., 37 % lower than the siteaverage of yearly methane emissions). 
    more » « less
  3. null (Ed.)
    Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ F C H 4 ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ F C H 4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ F C H 4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ F C H 4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ F C H 4 and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ F C H 4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments. 
    more » « less
  4. Abstract

    Evaporation (E) is a critical component of the water and energy budget in lake systems yet is challenging to quantify directly and continuously. We examined the magnitude and changes ofEand its drivers over Lake Erie—the shallowest and most southern lake of the Laurentian Great Lakes. We deployed two eddy‐covariance tower sites in the western Lake Erie Basin—one located nearshore (CB) and one offshore (LI)—from September 2011 through May 2016. MonthlyEvaried from 5 to 120 mm, with maximumEoccurring in August–October. The annualEwas 635 ± 42 (±SD) mm at CB and 604 ± 32 mm at LI. Mean winter (October–March)Ewas 189 ± 61 mm at CB and 178 ± 25 mm at LI, accounting for 29.8% and 29.4% of annualE. Mean dailyEwas 1.8 mm during the coldest month (January) and 7.4 mm in the warmest month (July). MonthlyEexhibited a strong positive linear relationship to the product of wind speed and vapor pressure deficit. Pronounced seasonal patterns in surface energy fluxes were observed with a 2‐month lag inEfromRn, due to the lake's heat storage. This lag was shorter than reports regarding other Great Lakes. Difference inEbetween the offshore and nearshore sites reflected within‐lake spatial heterogeneity, likely attributable to climatic and bathymetric differences between them. These findings suggest that predictive models need to consider lake‐specific heat storage and spatial heterogeneity in order to accurately simulate lakeEand its seasonal dynamics.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)